

CubeSat: Payload Electronics for Phased-Array Fed Lens Antennas

Lindsay Falk, Dylan Matthews, Luke Strachan, Maxine Tan, and Zack Tyler

University of Notre Dame, Department of Electrical Engineering

communication

flight computer

polarized inputs

interpretation

- We milled an antenna board that consists of 8 patch antennas and

RF

- USB power supply and interface with host computer

- Power MOSFET circuits to execute low power mode

- Motor control drivers and external connection interface

- 2 input channels taking in RF signals from beamformer

- Low-noise amplifier to increase RF signal gain

Pavload Electronics

- T-junction to combine power from horizontally and vertically

- Power detector to translate RF signal into DC voltage value for

- Three +4V voltage regulators to supply low-noise amplifiers

- Connection interface to beamformer evaluation board, for SPI

- Breakout connection point for I2C communication with IrishSat

- One +3.3V voltage regulator to supply VDD

ESP32-S3-WROOM-1 microcontroller

- Power tracking circuit for lines to RF side

Main Board

DC

STARTUP

Background

mission is a 2U CubeSat mission intended to

low-cost millimeter wave (MMW) phased-array

operating in the K-band (~23.8 GHz) for Earth

missions. This project aims to develop the first

downlink communications and Earth science

iteration of the electronics necessary for the

with the rest of the CLOVER-Sat system.

Earth

Chisum. The payload will be a low-power.

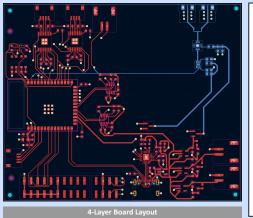
The student design team IrishSat's CLOVER-Sat carry a payload in collaboration with Dr. Jonathan 11 5 fed gradient index lens (PAFL) antenna receiver PAFL payload structure to operate and interface

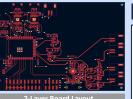
System Requirements

- Supply voltage at +3.3V and +4V for DC and RF chips

BUS

10.00 cm

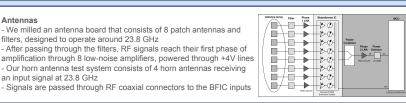

- Electrical control to deploy lens using stepper motors to a set F/d

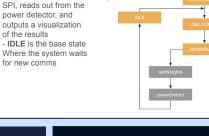

14.40 cm

CLOVER

CLOVER-Sat

- Track power consumption from RF components & be able to enter low power mode - Use SPI communication to set beamformer magnitude and phase weights using
- weight table determined using particle swarm algorithm
- Detect power of incoming signal centered at 23.8 GHz
- Develop test rig, complete with beam scanning simulation and display of results on host computer


Beamformer IC Evaluation Board


an input signal at 23.8 GHz

filters, designed to operate around 23.8 GHz

Antennas

- The BFIC eval, board allows the F5268 chip to interface with 8 RF inputs & 2 RF outputs.
- as well as connect directly to a digital interface for SPI communication purposes
- All 8 inputs come in from the antenna board, are magnitude amplified and/or phase shifted by the BFIC, and are power combined into 2 RF outputs before reaching the main board
- This was selected for this iteration as it was supplied to the project by Renesas and eliminated significant complexity and expense in mounting

Software Architecture

- State machine architecture designed to run through

STARTUP

- USB COMMS

ANTENNA OP sets the

weights on the antennas using

position

operations necessary for the intended CubeSat mission

- MOTOR DEPLOY sets up the motor speed and desired

lambda, actuates the motors, and determines the actual motor

Antenna Board Layout

Future Developments

Integrate full system into 1 compact PCB with higher quality, space grade parts

- Implement an I/Q demodulator and linear oscillator to demodulate in phase and out of phase signals
- Develop an antenna calibration mechanism. i.e. looking into deep space and determining the power read out
- Extend the antenna array to multiple dimensions